

Theresa Sevilis, DO TeleSpecialists, LLC

Tom Devlin, MD, PhD CHI Memorial / University of Tennessee

VALIDATE

Validation of Artificial Intelligence to Limit Delays in Acute Stroke Treatment and Endovascular Therapy

Thomas Devlin, MD, PhD1,3, Morgan Figurelle, DO¹, Amanda Avila, MD1, Gregory Heath, DHSc, MPH2, Caitlyn Boyd, M^{TT}A, MSN, RN1, Lani Gao, PhD2, Hira Ayub¹, Theresa Sevil¹, L^CI

ITeleSpecialists, LLC, 2University of Tennessee at Chattanooga, 3University of Torrne. The Health Science Center / CHI Memorial Hospital

DISCLOSURES

Thomas Devlin, MD, PhD - speakers bureau, equity interest in VIZ Morgan Figurelle, DO - none Amanda Avila, MD - none Gregory Heath, DHSc, MPH - none Caitlyn Boyd, MHA, MSN, RN - none Lani Gao, PhD - none Hira Ayub - none Theresa Sevilis, DO - none

Viz.ai is in 1300 hospitals Worldwide Based on Single Center Data

TABLE 1. PREVIOUS STUDIES ON VIZ.AI

	HOSPITAL	AUTHORS	TITLE	STUDY DESIGN	STUDY PERIOD	SAMPLE SIZE	MAIN RESULTS	REFERENCE	
	Mount Sinai., New York, NY.	Money, IRFifi, JT.	Impact of Viz LVO on Time-to- Treatment and Clinical Outcomes in Large Vessel Occlusion Stroke Patients Presenting to Primary Stroke Centers	Single Center Hub - Spoke model compairing metrics before and after VIZ LVO implementation.	Pre-Viz: July 1, 2018, and March 15, 2019 / Post -Viz July 1, 2019, and March 15, July 1, 2019, and March 15, 2020	55 patients (29 pre-Viz cohort / 26 post Viz cohort)	Post-VIZ implementation: (1) faster doce- to-NIV notification (delta = 15 min (40 vs 25 min, p=0.01) with less vanistion (p~ 0.05); (2) doce-to-puncture time was shorter but not significant (delta = 25 min shorter in Viz cohort, p= 0.15, NS [*]).	medRxiv preprint doż https://doi.org/10.1101/2020.07. 02.20143834; this version posted 24by 5, 2020.	 15 min Faster Door-to NIR Contact
2	University of California, San Diego., CA.	Figurele ME Meyer BC.	(VISIION): Viz.ai Implementation of Stroke Asymmetical Intelligence and Communication Platform to Improve Indicators and Outcomes for a Comprehensive Stroke Center and Network	Single Center Hab - Spoke model compaining metrics before and after VIZ LVO implementation. Assessed effect of day vs night shift arrival	Pre-Viz.ni period (June 10, 2020, to January 17, 2021) vs. Post Viz.ni deployment	82 NIR cases total. (pre- VIZ/post-VIZ) Direct to Hub day (777), direct to Hub night (10:5), Spoke arrival day (13:6). Spoke arrival night (17/17).	Post-VL2 implementation: (1) faster door to groin times for both patients presenting to the Spoke and Hab (HUB-DTG-24hr: 32% reduction, 127 min vs 80 min (delta = 41); p=0.006; SPOKE-DTG-24hr: 33% reduction, 42 min vs 35 min; (delta = 14), p=0.036).	ANR Am J Neuronsdiol 2023, http://dx.doi.org/10.3174/sjur.A7 716	Faster Door-to-Table (Spoke = 42 min / Hub =14 min)
3	Erlanger Health System - Univ of Tennessee, Chattanooga, TN.	Devin T Saver J.	(DISTINCTION): Utilization of Applied Artificial intelligence to Facilitate LVO Detection and Synchronizing Workflow to Improve Time to Treatment in High-Volume Hub & Stroke Networks	Single Center Hub - Spoke model compaining metrics before and after VIZ LVO implementation.	Nov, 2017 - Jul, 2019	Pre Viz: 11 patients ; Post Viz: 4 patients	Post-Vi2 LVO implementation significant improvement in Spoke door-in to hab groin puncture (mean = 218 vs. 141, p=0.02); and in Spoke CT to groin puncture time (mean = 200 vs. 132, p = 0.04).	World Stroke Organization. 2020, Abstract #3069 • AS38.	Faster Spoke door-in- & spoke CT- to Table
	Semmes- Nurphey Clinic,University of Tennessee, Memphis, TN.	Elijovich LHoit D.	Automated emergent large vessel occlassion detection by artificial intelligence improves stroke workflow in a hab and spoke stroke system of case	Single Center Hub - Spoke model compaining metrics before and after VIZ LVO implementation.	Dec, 2018 - Dec, 2019	104 patients	Post-Viz: Significant improvement in median time form CTA completion to NIV contact (delta = 19 min (26 min v 7), p=0.001) and Spoke doev in to a metrial puncture for patients transferred from spoke to hub for EVT (delta 44 min, 185 vs 141, p=0.027).	J Neurointerv Starg. 2022 Jul;14(7);704-708. doi: 10.1136/neurintsurg-2021- 017714	Faster spoke CTA to NIR call (19 min) Spoke door to Table (44 min)
5	Valley Baptist medical Center, Harlingen, Texas	Hassan AE Wondwossen GT	The implementation of artificial intelligence significantly reduces door-in- door-out times in a primary care center prior to transfer	Single Center Hub - Spoke model compairing metrics before and after VIZ LVO implementation.	Pre Viz: Feb 2017 to Nov 2018 - Post Viz: Nov 2018 - June 2020	Pre Viz = 28; Post-Viz = 35	Post Viz.ai median CTA time at PSC to doze-in at CSC was significantly reduced by an average of 22.5 min. (132.5 min versus 110 min; p = 0.0470).	Interv Neuroradiol - 2022 Aug 25;15910199221122848. doi: 10.1177/15910199221122848.	Faster Spoke CTA to Hub Door-in (22.5 min)
6	Valley Baptist medical Center, Hartingen, Texas	Hassan AE Telde WG	Artificial Intelligence-Parallel Stroke Workflow Tool Improves Reperfusion Rates and Door-In to Puncture Interval	Single Center - Hub and Spokz Model	Pre-Viz: Nov 2016 - Nov 2018: Post-Viz: Dec 2018 - May 2020	Pre-Viz: 86 patients; Post- Viz: 102 pts	Mean Door-in to Puncture time at the Hub improved (delta = 86.7 min; 206.6 vs 119.9 min; p=0.001). Significant improvement in rate of reperfusion TIC1 20-3 (p=0.036).	Stroke Vasc Interv Neurol. 2022;2:e900224. DOI: 10.1161/SVIN.121.000224	Faster Hub Door to Puncture (86.7 min) Higher Rate of TICI2b-3 Reperfusion (9.2%)

了 TeleSpecialists

VALIDATE

Critique of past Studies on Viz.ai

While the studies to date have been small, the fact that many found statistically significant improvement in stroke workflow after Viz.ai installation suggests the technology may be highly impactful.

LIMITATIONS of Previous Viz.ai Studies

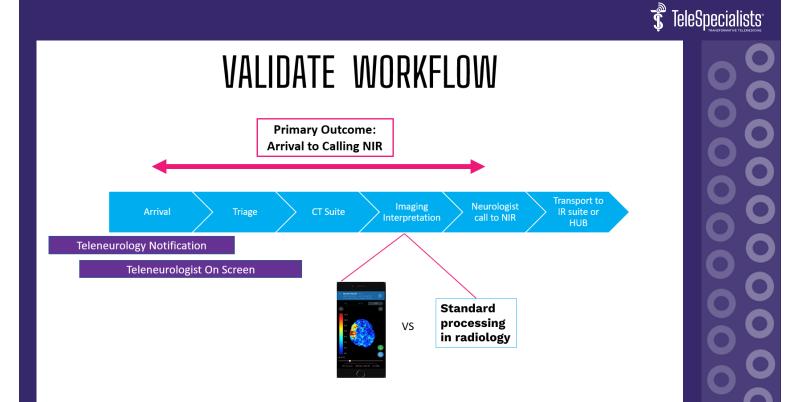
Small sample size questions generalizability & reproducibility of results.

All were serial cohort studies with significant time between cohorts.

Many metrics were assessed not directly controlled by Viz.ai.

Collected a large data set from the TeleCare by TeleSpecialists[™] database on acute stroke consultations performed by TeleSpecialists Neurologists.

TeleSpecialists

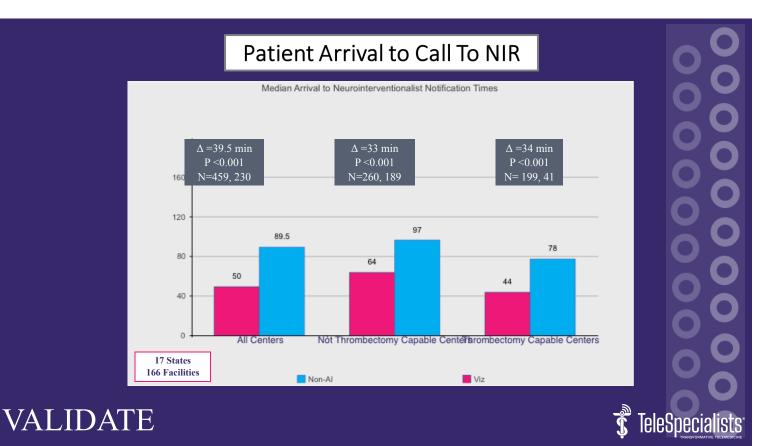

Data was collected from Dec 1, 2021 through Mar 31, 2022.

Primary Analysis: Concurrently Compared Workflows Metrics Between 2 Cohorts: Viz vs Non-AI.

Secondary Analysis: Subgroups (Thrombectomy vs Non-Thrombectomy Center) contact with NIR.

Exclusions: Another AI system OR if teleneuro did not contact the NIR directly.

Statistical analysis was done by an independent team of biostatisticians at the University of Tennessee Chattanooga.



VALIDATE RESULTS

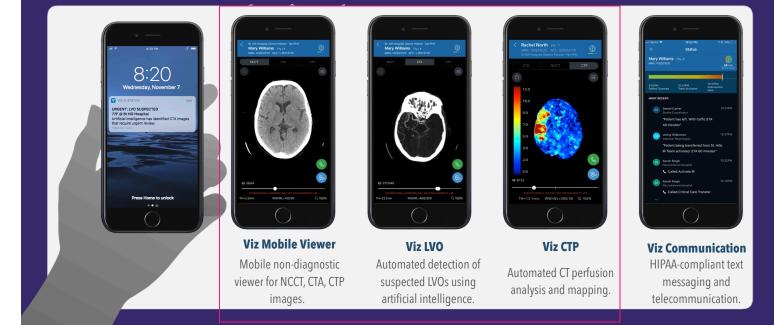
14,116 patients enrolled - 17 states - 166 facilities Viz cohort - 8,557 patients, 76 hospitals Non-AI cohort - 5,559, 90 hospitals

	Non-AI (5,559)	VIZ (8,557)	P value
Sex, Female n(%)	2,961 (53.3%)	4,624 (54.0%)	0.3776
Age mean, sd	65.5 ± 15.9	66.8 ± 16.3	< 0.001
Median NIHSS (IQR)	2 (1.0, 6.0)	2 (0.0, 6.0)	<0.001
Median Pre-mRS (IQR)	0 (0.0, 1.0)	0 (0.0, 1.0)	0.2602
Prenotification (%)	997 (17.9%)	2,134 (24.9%)	< 0.001

Results

OVERALL ANALYSIS: NON-AI vs VIZ							
STEP BY STEP TIME INTERVAL COMPARISON							
	Non-AI (n=5,559)	Viz (n = 8,557)	P value				
Patient Arrival to NIR Notification Time, Median(IQR)	89.5 (59.2,122.0)	50 (40.0, 82.0)	p < 0.001, delta = -39.5				
Patient Arrival to TeleNeuro Call Center Start, Median(IQR)	12.6 (6.2, 26.3)	10.3 (4.8, 20.9)	p < 0.001, delta = -2.3				
TeleNeuro Call Center Start to First TeleNeurologist Login	3 (2, 5)	2 (1,4)	p < 0.001, delta = -1				
TIME ADJUSTED VIZ-SPECIFIC EFFECT (CALL TO NIR) = 36.2 min							

000


Results

SUBGROUP ANALYSIS: NON-AI vs VIZ AT Thrombectomy vs Non-thrombectomy Centers									
STEP BY STEP TIME INTERVAL COMPARISON									
	Non-T	Thrombectomy (Centers		Thrombectomy Centers				
	Non-AI (N = 4,962)	VIZ (N = 5,737)	P value		Non-AI (N = 597)	VIZ (N = 2,820)	P value		
Patient Arrival to NIR Notification Time, Median (IQR)	97 (62.00, 126.50)	64 (46.00, 91.00)	p < 0.001, delta = -33		78 (55.00, 95.00)	44.00 (33.75, 59.00)	p < 0.001, delta = -34		
Patient Arrival to TeleNeuro Call Center Start, Median(IQR)	12.38 (5.97, 25.76)	10.97 (5.23, 21.67)	p < 0.001, delta = -1.41		14.62 (7.31, 28.80)	8.53 (3.81, 17.54)	p < 0.001, delta = -6.09		
TeleNeuro Call Center Start to First TeleNeurologist Login	3 (2.0,5)	2 (1.0,4)	p < 0.001, delta = -1		3(2.0,5.0)	2.0(1.0,4.0)	p <0.001, delta = -1		
TIME ADJUSTED VIZ-SPECIFIC EFFECT (CALL TO NIR): SPOKE = -30.59 min / HUB = -26.91 min									
VALIDATE S TeleSpecialists*									

VALIDATE primarily leveraged Viz.ai's fast high-resolution neuroimaging platform.

Under different stroke care models, other Viz.ai functionalities

VALIDATE

CONCLUSIONS

- The results of this large multicenter investigation show that Viz.ai is a powerful tool expediting patient workflow and first contact with the NIR within a telemedicine system.
- Benefits exists regardless of whether the patient first presents to a spoke or hub hospital.
- This 17 state, 166 site study corroborates the results of previous smaller studies that concluded a benefit of Viz.ai at driving faster LVO detection and overall patient workflow.
- This large multicenter study, when combined with the results of previous reports, represent a call to action for wider adoption of this technology into the armamentarium of acute stroke care.

Thank you

• Funding: TeleSpecialists, LLC and the NeuroScience Innovation Foundation

